|
In particle physics, split supersymmetry is a recent proposal for physics beyond the Standard Model. It was proposed separately in three papers. The first by James Wells in June 2003 in a more modest form that mildly relaxed the assumption about naturalness in the Higgs potential. In May 2004 Nima Arkani-Hamed and Savas Dimopoulos argued that naturalness in the Higgs sector may not be an accurate guide to propose new physics beyond the Standard Model and argued that supersymmetry may be realized in a different fashion that preserved gauge coupling unification and has a dark matter candidate. In June 2004 Gian Giudice and Andrea Romanino argued from a general point of view that if one wants gauge coupling unification and a dark matter candidate, that split supersymmetry is one amongst a few theories that exists. The new light (~TeV) particles in Split Supersymmetry (beyond the Standard Models particles) are | | gluino |- | | | | wino |- | | | | bino |- | | | | higgsino |- | | | | higgsino |} The Lagrangian for Split Supersymmetry is constrained from the existence of high energy supersymmetry. There are five couplings in Split Supersymmetry: the Higgs quartic coupling and four Yukawa couplings between the Higgsinos, Higgs and gauginos. The couplings are set by one parameter, , at the scale where the supersymmetric scalars decouple. Beneath the supersymmetry breaking scale, these five couplings evolve through the renormalization group equation down to the TeV scale. At a future Linear collider, these couplings could be measured at the 1% level and then renormalization group evolved up to high energies to show that the theory is supersymmetric at an exceedingly high scale. == Long Lived Gluinos == The striking feature of split supersymmetry is that the gluino becomes a quasi-stable particle with a lifetime that could be up to 100 seconds long. A gluino that lived longer than this would disrupt Big Bang nucleosynthesis or would have been observed as an additional source of cosmic gamma rays. The gluino is long lived because it can only decay into a squark and a quark and because the squarks are so heavy and these decays are highly suppressed. Thus the decay rate of the gluino can roughly be estimated, in natural units, as where is the gluino rest mass and the squark rest mass. For gluino mass of the order of 1 TeV, the cosmological bound mentioned above sets an upper bound of about GeV on squarks masses. The potentially long lifetime of the gluino leads to different collider signatures at the Tevatron and the Large Hadron Collider. There are three ways to see these particles: * Measuring the ratio of momentum to energy or velocity in tracking chambers ( dE/dx in the inner tracking chamber or p/v in the outer muon tracking chamber) * Looking for excess singlet jet events that arise from initial or final state radiation. * Looking for gluinos that have come to rest inside the detector and later decay. Such an event may occur if the gluino hadronize to form an exotic hadron which strongly interacts with a nucleon in the detector to create an exotic charged hadron. The latter will decelerate by electromagnetic interaction inside the detector and will eventually stop. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Split supersymmetry」の詳細全文を読む スポンサード リンク
|